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The adaptation of the lattice-gas model to embody features possessed by 
water is further explored. On the basis of Martin's functional derivative 
formulation of Ising problems, a perturbation scheme is developed which 
allows calculation of the free energy to any desired order in the interaction 
potential at fixed density. The free energy correct to second order in the 
interaction strength is utilized here for calculation of other thermodynamic 
properties of the model. With reasonable choices of values of the interaction 
parameters these thermodynamic properties of the model can be brought 
into agreement with those of real water. 
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1. I N T R O D U C T I O N  

In  a p r e v i o u s  pape r ,  ~1~ h e r e a f t e r  r e f e r r e d  to  as III ,  we  u t i l i zed  a g e n e r a l i z a t i o n  

o f  t he  l a t t i ce -gas  m o d e l  o f  Lee  a n d  Y a n g  (2~ fo r  a p p r o x i m a t e  c a l c u l a t i o n s  o f  
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some properties of water. In earlier papers, ~a'4~ hereafter called I (a~ and II, (4~ 
we presented a series of considerations, largely concerned with the phase 
transitions bounding the liquid phase, which clearly point to a particular 
physical model for the liquid phase. According to these considerations, the 
condensation process, which differentiates the liquid from the vapor, is a 
long-range "ordering" process of aggregation to form a random network (of 
hydrogen bonds in the case of water) of macroscopic size ("gelation"), and 
the melting process, which differentiates the liquid from the crystal, is a long- 
range disordering process of randomization of the locations and sizes of the 
smallest (i.e., the non-short-circuited) closed loops of hydrogen bonds (H 
bonds) in the network. These processes are shown in I and II to be individually 
highly cooperative and therefore to be capable of manifestation as two distinct 
first-order phase transitions. It is also indicated in I that these would be 
expected to coalesce into one transition (sublimation) at low pressures. 

Since these cooperative processes involve changes in long-range, rather 
than short-range, order, the suggestion that they are indeed the basis of the 
two phase transitions (melting and boiling) is compatible with the modern 
interpretation of phase transitions and critical phenomena (see, e.g., Ref. 5), 
which has been gleaned in particular from studies of Ising models. A form of 
short-range order is, of course, imposed on liquid water (as well as the crystal 
and also the dense gas) by both the short-range and directional nature of the 
H-bond interaction, which respectively tend to fix the lengths of H bonds and 
fix the angles (approximately tetrahedral) between any two H bonds emanating 
from a common water molecule. Nevertheless, those older interpretations of 
the liquid phase that attribute the essence of its differehce from gas and crystal 
to its possession of short-range order cannot be correct, since short-range 
ordering processes cannot by themselves yield first-order phase transitions 
(with latent entropy changes). 

Thus the model for liquid water to which the considerations of I and II 
have led is that of a random, internally mobile network (or "gel") of H bonds. 
The mobility is ascribable to the fact that in this gel of H bonds, as distinct 
from chemically polymerized gels, the internal bonding is reshuffled in times 
of the order of 10 -11 sec. Simple liquids may be analogously interpreted as 
internally mobile "gels" of van der Waals "bonds." 

It should be noted that this picture of liquid water, which was obtained 
in I and II by consideration of the phase transitions bounding the liquid 
phase, is essentially the same as that obtained from molecular dynamics 
simulations of the liquid itself by Rahman and Stillinger5 6~ 

With the unmodified Lee-Yang lattice-gas (Ising) model, however, no 
distinction can be made between a randomly aggregated "gel," i.e., liquid, 
and a systematically interconnected array of rings the non-short-circuited 
members of which are of uniform size, i.e., crystal, for the lattice-gas model 
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itself imposes an element of crystallike order on the phases it displays, both 
its aggregated (i.e., condensed) phase (liquid or crystal according to one's 
taste) and its vapor phase. Thus the unmodified lattice-gas displays only one 
phase transition. 

The modifications presented in III to the lattice-gas model not only 
introduce the possibility of accounting, approximately, for the effects of  
molecular rotational degrees of freedom, but also introduce the possibility of  
distinguishing between a phase possessing full crystalline order and one which, 
though aggregated to macroscopic dimensions (i.e., "gelled"),  is significantly 
less ordered. Specifically, these modifications utilize a lattice (body-centered 
cubic, bcc, is convenient for water) which is composed of more than one 
sublattice (two tetrahedral ones in the case of the bcc lattice) and allow for a 
variety (albeit a discrete set) of  molecular orientations on each lattice site. 
Half  of these orientations correspond to participation in one sublattice, the 
remainder to participation in the other. In the less ordered condensed phase 
(" liquid ") a network or "ge l "  of connected (via H bonds) molecules wanders 
over both sublattices. In the more ordered condensed phase ("crystal")  all 
molecules are on sites defining one sublattice, an arrangement which permits 
maximum intermolecular bonding. 2 

In III the mean field approximation (MFA) was shown to give the 
correct critical temperature with a reasonable value of H-bond energy. Exact 
calculations of the second and third virial coefficients were also presented. 
The second virial coefficient could be placed in excellent agreement with 
experimental results with a reasonable choice of interaction energies. The 
agreement with the experimentally determined third virial coefficient was 
poor, however. 

In this paper we further explore properties of the modified lattice gas 
(MLG). A formalism is developed from which properties of the model can 
be calculated to any desired degree of accuracy. The thermodynamic proper- 
ties of  a second-order approximation (SOA) to the model prove to compare 
favorably with those of water. This SOA, which is the simplest correction to 
the MFA, not only gives thermodynamic properties which agree reasonably 
with experiment, but gives a density maximum as well. 

In Section 2 the general formalism is introduced. The SOA and random 
phase approximation (RPA) are derived. In Section 3 the thermodynamic 
properties of the SOA are calculated and compared with experiment. 

2 If the two-sublattice modification of the Lee-Yang model is introduced alone, that is, 
without the modification that allows for rotational degrees of freedom of the water 
molecules, as might be appropriate for a treatment of simple liquids, then one can still 
have a liquid-solid (as well as vapor-liquid) transition provided one still allows intra- 
sublattice bonding to be stronger than intersublattice bonding, perhaps as a conse- 
quence of differences in the corresponding near-neighbor distances. Such is, in fact, 
precisely the classical model for melting due to Lennard-Jones and Devonshire. C7~ 
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2.  F O R M A L I S M  

In this section we introduce a formalism which facilitates calculation of 
the properties of the M L G  (or with appropriate change of indices, any Ising- 
like) model. This formalism involves functional derivative techniques which 
have proven useful in a number of  branches of classical and quantum 
physics. 3 Our presentation is based on the treatment of the classical fluid 
problem and of  the Ising model given by Martin ~11~ and somewhat on the 
fully renormalized formulation of statistical mechanics given by Denomini- 
cis ~13~ and Denominicis and Mart in i  1r 

In order to invoke the functional formalism, we must introduce an 
arbitrary external one-body potential into the M L G  Hamiltonian presented 
in Eq. (1) of  III. The modified Hamiltonian is 

H - / z N  = K.E. + ~ [U i"t + U~Xt(R) - /~]n~(a)  
r  

+ �89 ~ V,~,(R - R')n~(R)n~,(R') (1) 
COG S 

Here R labels a lattice site and a labels any one of the 12 molecular orientations 
each of which points both OH groups and both " lone pairs" toward nearest 
vertices of one of  the tetrahedral sublattices of the bcc lattice; n~(R), which 
possesses only the values zero or one, is the number of molecules at lattice 
site R in orientation a. The "one-body potential" U ~t + U3~t(R) is assumed 
to consist of the "internal kinetic energy ' ' ~  (of rotation, vibration, etc.) 
U ~t and the external potential UUt(R); /z is the chemical potential; and 
V,,,(R - R') is the potential energy associated with the two-body interaction 
between molecules in orientations a and a' separated by distance vector 
R - R ' .  

The variables n,(R) are constrained by the condition 

~ n ~ ( R )  = (~  (empty site) 
(occupied site) (2) 

The potential energy is such that for a nearest-neighbor separation 

- E  

- - E  2 

if aa' correspond to orientations 
that permit H bonding 
if rotation of a single molecule 
permits H bonding 
if rotations of  both members of the pair 
are necessary to permit H bonding 

(3) 

3 Functional derivative techniques in quantum field theory were first used by Schwinger. (8~ 
These techniques were applied to nonrelativistic many-particle systems by Martin and 

�9 Schwinger. (9'11) The Martin-Schwinger techniques were discussed and developed 
extensively by Kadanoff and Baym. (1~ Also see the review by Stell. (12~ 
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Vis assumed to vanish at separations other than nearest-neighbor separations. 
The explicit form of the potential matrix is given in the Appendix of III. 

It is convenient to use a shorthand notation for indices which will usually 
appear together. For  example, the combination %, R1 will be denoted by just 
the label 1. With (1) the grand partition function takes the form 

exp[W(u, 4)] = Tr exp[~(1)n(1) + �89 (4) 

where we have introduced the dimensionless one- and two-body potential 
variables 

u(1) = -/3[U=~ + ~t _ , u~  (R~) ~1 (Sa) 

4(12) = -/3V~l,,2(R~ - R2) (5b) 

and 

~(1) = u(1) + l n g  (5c) 

Z is vc/h a, where vo is the volume of the unit cell and ;~ = (fih2/2mrr) 112 is the 
thermal wavelength (/3, In, and rn have their usual meanings). The factor h 
arises via treatment of the translational kinetic energy and assures that the 
translational kinetic energy is always 3 k T  per molecule. The symbol Tr  
denotes a sum over all allowed states of the system, i.e., over all sets of values 
of the variables n,(R) that are consistent with (2). 

In Eq. (4) and in subsequent equations a summation convention is 
employed for repeated indices. 

We use W(u, 4) as a generating function for correlation functions of 
the density. For  example, we obtain by differentiation 

D 
(n(1)) = e -w au(1) ew 

(n(1)n(2)) = e -w - -  

0 
(n(1) ... n(i)) = e -w - -  

Ou(1) 

As is customary, we define the cumulants by 

e w 
c~u(1) au(2) 

0 
- -  e W 

Ou(i) 

D 
G(1 ... i) = Ou(1) 9u(i) W(u,  4) 

The correlation functions (6a)-(6c) are related to the cumulants by 

(n(1)) = 6(1) 

(n(1)n(2)) = G(1)G(2) + G(12) 

(6a) 

(6b) 

(6c) 

(7) 

(8a) 

(8b) 
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and 

(n(1)n(2)n(3)) = G(1)G(2)G(3) + G(1)G(23) + G(2)G(13) 

§ G(3)G(12) + G(123) (8c) 

The thermodynamic potential is especially easy to evaluate when the 
two-body potential q~ vanishes. The nonuniform generalization of (5) of 
III is 

W(u,O)= ~ ln(l + Z ~  e ~(~)) (9) 

(9) clearly reduces to (5) of III when U ext = 0. 
The cumulants are easily obtained by differentiation. In particular the 

average density of water molecules at site R1 having orientation al when 
= 0 is given by 

Z[exp u(1)] (10) 
Go(l) = {1 + Z •  exp[~(R1)]} 

t~ 

We see that Go at a given site R~ and orientation al does not involve the 
potential at sites other than R~ but does depend on the potential correspond- 
ing to various orientations. 

For many purposes it is convenient to eliminate the one-body potential 
u as a variable in favor of the one-body density G. This can be accomplished 
by means of a Legendre transformation. To see this, we observe that 

] - G(1)][n(2) - G(2)]) ( l la)  
82W 

G(12) ([n(1) 
8u(]-) -b--u(2) ! 

and 
82 W 

~ [�89 ~-[�89 ~ 

= ([n(1)n(2) - (n(1)n(2))][n(a)n(4) - (n(3)n(4))]) (11b) 

are elements of positive-definite matrices. It then follows that second deriva- 
tives of W with respect to {�89 + [1/h(3)]u(3)} for arbitrary h(3) are 
positive definite. If  we choose h such that the fluctuation is minimized, then 
we can show that 

( 82w_ 
8[�89 8[�89 ~ 

8 2 W 8u(5) 8u(6) 8 2 W 
8[�89 8u(5) 82 W 8[�89 8u(6) 

= G(1234) - G(125)G-l(56)G(634) 
+ G(13)G(24) + G(23)G(14) (12) 
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is positive definite. In (12) we have denoted the matrix inverse of the two-point 
cumulant by 

6-1(12) = I ,~T(2)]~- e2W - eu(1)-Tu(2) o 

We define the (dimensionless) free energy by a Legendre transformation 
on the thermodynamic potential: 

F(G1, 4) = - W(u, O) + u(1)G(1) (14) 

The natural variables for the free energy are the density and the potential, since 

(aF(GI, 4)] 0--~) ]r = u(1) (15a) 

and 

(aF(G,, = _ G(12) - G(1)G(2) (lSb) 4)] 
~ 2 ~  ]al 

Equation (15a) is a statement of the single-particle renormalization expressing 
the one-body potential as a function of the density and the potential. The 
second derivatives of F are indefinite, since 

~2F ~ (~u(1) 
~G(1)TG(2)]r = \aT(2)]~ = G-~(12) (16a) 

is positive definite, while 

~2F (~G(12)  ~ - [rhs of (16a)] (16b) 
~[14(12)] ~[1,k(34)] = - \ ~ ] ] a l  = 

is negative definite. 
The free energy can be easily obtained when the two-body potential 

vanishes. With use of (10) we can see that 

u (1 )=  ln{Go(1)/(Z[1 - ~ G0~(R1)I) ) (17) 

Thus using (9) and the definition of F, we obtain 

F(Go, 0) = G0(1) In Go(l) 

- ~ [ 1 -  ~ G 0 ( 1 ) ] l n [ 1 -  ~ G o ( 1 ) l - G o ( 1 ) l n Z  (18) 

We can now obtain a closed equation for F by integration of (15b) with 
respect to q~. It easily follows that 

~ d F ( ~ , s ~ )  = as 84(12) ~(12) F(G, d?) - F(G, O) = ds -~ 

= -1a(1)~(12)c(2)  - I ds a(12, s~)~(12) (19) 
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But using (16a), we can write G(12, n, s~) in terms of a second derivative o f F  
with respect to the density: 

~ OG(1) OG(2) ~(19~ F(G, ~5) = F(G, 0) - �89 - �89 ds -~-((~7~) ~"~-" (20) 

Equation (20) is the desired equation for the free energy. It in principle 
uniquely determines F and can be used for calculation of F to any finite order 
in perturbation theory. 

So far every equation in this section is exact. Obviously, exact solution 
of (20) is impossible. This equation is only useful if meaningful approxima- 
tions can be obtained from it. As we shall see, such approximations can be 
readily obtained by iteration. The MFA as discussed in III is obtained, for 
example, by neglecting the fluctuation (integral) term in (20): 

Fro1( G, (0 = F(G, 0) - �89 (21) 

We can obtain the equation of state by calculating the thermodynamic 
potential W = PflV as a functional of G and q~. From (15a) 

OFmr(G,~G(1) ok) ,-(~E 1 G(1) u(1) Z = In - - ~ ( R 1 ) q !  -~(12)G(2) (22) 

or 

Substituting this into (21), we obtain 

Wmr(Gz~)=--~ ln[1 -- ~ G(1)]-�89 (23) 

In equilibrium this reduces to (12) of III for the mean-field equation of state. 
We obtain corrections to MFA by treating the (functional) integral in 

some approximation. This can be done easily by differentiation of (22): 

( a2F(G' = Gffl(12) - ~(12) = Gy~a(12) (24) 
~) 

OG(1) aG(2)] 

The inverse of (24) is called the random phase approximation (RPA) to the 
correlation function. If one expands GRpA to the order in which it can be 
literally believed (first order in ~), 

a(12) z a0(12) + Go(13)~(34)ao(42) (25) 

substitution into (19) yields 

F2(G, ~) = F~I(G, ~) - �88 (26) 

where we have used ~(11) = 0. 
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We call this the second-order approximation (SOA) to the free energy, 
since it is correct to second order in the potential at fixed density. 

We can obtain the corresponding equation of state by differentiation of 
(26). The resulting expression for the thermodynamic potential is 

W2(G, (~) = W,~(G, 4) - �89 (27) 

+ �88 

In equilibrium (27) gives the second-order correction to (12) of III. Detailed 
discussion of this equation of state and its agreement with experiments on 
water will be left for Section 3. 

In deriving (26) we expanded G~eA only to lowest order in the potential. 
However, we notice that the (functional) integral in (19) can be performed 
analytically if we substitute GRpA for G. This integration yields 

F~pA(G, 4) = Fm~(G, 4) + �89 tr 1n[8(12) - G0(13)q~(32)] (28) 

where the logarithm is defined by its power series expansion and the trace is 
taken over all the matrix indices. 

Expression (28) will be referred to as the (RPA) free energy. In Appendix 
A we indicate how the RPA can be used in quantitative calculations. In 
particular, we show how to calculate GapA analytically. 

A word of caution is in order here. One must be very careful in using the 
RPA as an approximation to be compared quantitatively with experiments. 
In particular, a catastrophe in its critical region is well known/TM The cause 
of this catastrophe is easily seen from examination of (28) and (A.14) of 
Appendix A. Fmf is singular at the mean-field critical point. Additionally, as 
follows from the analysis in Appendix A, the argument of the logarithm in 
(28) goes through zero at the mean-field critical point. However, the condition 
for a critical point (i.e., O2P/~n2 = OP/~n = 0) is satisfied at some lower 
temperature. Thus, there is a region between the MFA critical temperature 
and the RPA critical temperature where the free energy and the pressure are 
no longer single-valued real functions. 

As we shall see in the following section, there are no such difficulties in 
the SOA. For this reason and for computational simplicity, we will use the 
SOA for our quantitative calculations. 

3. T H E R M O D Y N A M I C  P R O P E R T I E S  OF THE 
S E C O N D - O R D E R  A P P R O X I M A T I O N  

In this section we quantitatively explore the SOA. In equilibrium (26) 
reduces to 

F2 /~A = n In n f = ~ o o  =~oo Z + (1 - n )  ln(1 - n ) - n 2 B 2 - � 8 9 1 8 9  (29) 
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where No is the number of lattice sites, and 

B~ s = 4(8s-/%1 + �88 + ~/3E) 

AB2 = 2 [ { (8 ,1 )  = + �88 = + -~(fiE) =1 

and 

B4 : 6({~1 + �88 + ~ E )  2 

From (27), or by direct differentiation of (29), we obtain the equation of state 

P f i v c  = - ln (1  - n )  - n 2 B 2  - n 3 B 8  - n 4 B 4  (30) 

The energy is obtained by differentiation of (29) at constant volume. If  

I000 

13. 

500 

0 ~ I 

(a) 0 n I 

Fig. I .  (a) Pressure vs. latt ice density phase diagram for  the SOA to the model  w i th  
energy  pa r ame te r s  E ---- 4.58 kca l /mole ,  E1 = 0.915 kca l /mole ,  and  ~2 = - 1.19 kca l /mole .  
(b) E x p a n d e d  view o f  the  circled reg ion  o f  (a), s howing  the  pecul ia r  behav io r  o f  the  
l iquid  side o f  the  coexis tence  curve  in the  0 -100~  range .  
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we allow the lattice to expand with temperature to maintain the correct 
nearest-neighbor distance, we must  differentiate this dependence in calculating 
the energy. However,  for simplicity we neglect this dependence in this section. 
The expressions, corrected for  the lattice expansion, for the energy, entropy, 
and specific heats are given in Appendix  B along with the assumed tempera- 
ture dependence o f  Vc. 

With neglect o f  the lattice expansion, the energy, entropy, compressibility 
and specific heats are as follows. ~ 

4 We also should include the effects of internal motion of single water molecules on the 
thermodynamics. This can be accomplished by adding a term ~nt to the free energy (29). 
For our calculations we have used the rotational free energy 

~ . t  = - n ln[ (~rll212 )(  T310 ~t O~Oc)ll2] 

where 0~ = h2(2I, k) ,  the I 's  being the corresponding principal moments of inertial 
of the water molecule. 

T = 3 7 3 ~  

~.5 

O- 

T=353~ 

T=334~ 

o To 277~ 

.805 .8l 
(b) n 

Fig. 1. Continued. 

,814 
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Energy: 

f ie  = fioZ/No = fl(~f/~fl),~ 

= ~n  - n2(B2 + AB2) -- n 3 B z  - ~n4B4 (31) 

Entropy: 

s =  S / k N o  = f ie  - f 

= {n - n ln(n/Z) - (1 - n)ln(1 - n) - n 2Aaz 

- -  �89 - �89  (32) 

Isothermal compressibility: 

n ~Pf i vc /~n  = [1/(1 - n)] - 2n2B2 - 3n3B3 - 4n4B4  (33) 

Specific heats: 

n c v / k  = 3 n  + 2n  2 A B 2  + n3B3 - 2n~B~ (34) 

~. cv [n(~s /On)r  - s]  2 
n 

= n -k + n ( O P ~ v d O n ) r  
(35) 

where 

n ( g s / g n ) r  = ~n  - n In(n/Z) + n ln(1 - n )  - 2n  2 A B 2  - { n 3 B 3  - { n ~ B a  (36) 

In Fig. 1 the pressure vs. (lattice) density phase diagram for the model is 
plotted for E = 4.58 kcal/mole, E1 = 0.915 kcal/mole, and e2 = -1 .19  
kcal/mole. These values are chosen to give a boiling point at 1 atm of  100~ 
with the best possible liquid density obtainable with reasonable values of the 
parameters. As in III, we assume that the nearest-neighbor distance is a linear 
function of  the temperature and choose the lattice size to fit the known (from 
X rays) nearest-neighbor distance for water. The liquid density at 1 arm and 
100~ is n = 0.81217, which converts to p = 1.323 g/cm 3 when multiplied 
by the mass of  a water molecule and divided by the unit cell volume. This is 
larger than the experimental value of  p = 0.958 g/cmL We believe that this 
discrepancy results because the second-order approximation is not sufficiently 
sensitive to the strong angular correlations. Nevertheless, this result is a 
significant improvement over the MFA. The phase diagram for the MFA 
with the same values of  the parameters is shown in Fig. 2 for comparison. 
It is seen, for example, that the coexistence pressure at 100~ is 30 atm. To 
obtain a 1 arm coexistence pressure, it is necessary to multiply each energy 
parameter by 1.7. Clearly, this would imply too large a value for the H-bond 
energy ( ~  8 kcal/mole). If  this is done, however, the corresponding liquid 
density discrepancy becomes worse (calculated p = 1.628 g/cm3). The density 
of the vapor is reasonably good in either case (see Table I), since this density 
is sufficiently low that the vapor is nearly ideal. 

The critical temperature, critical pressure, and critical density obtained 
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I000 

363 

o 500 

gl. 

0 
�9 5 I 

n 

Fig. 2. Pressure vs. lattice density phase d iagram for  the M F A  to the model  for  the same 
values of  the energy parameters  as in Fig. 1. 

in this SOA (SO II) to the model are all too high (see Table II). If  we scale 
the energy parameters by a factor of 0.709, we obtain the correct critical 
temperature, a better critical pressure, but a worse critical density. This 
scaling, of  course, would result in a boiling point at 1 atm which would be 
too low. The observation that the H-bond energy which will fit the critical 
temperature is less than that required to fit the boiling point suggests a major 

Table I. Coexist ing Densit ies at 1 a tm Pressure ~ 

Experiment  M F A  SOA 

PL, g/cm 3 0.958 1.629 1.323 
pv, g/era 3 0.598 • 10 -3 0.591 x 10 -3 0.593 x 10 -3 

= The SOA Values are obtained with E = 4.58 kcal/mole, ~1 = 0.915 
kcal/mole, and e2 = - 1.19 kcal/mole. The mean  field values are ob- 
tained by multiplication each of  these parameters  by 1.74. 
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Table II. Crit ical  Thermodynamics  = 

Experiment MF I MF II SO I SO II 

pc, g/cm a 0.325 0.688 0.612 0.412 0.353 
Pc, atm 218 783 873.4 321.3 478.5 
To, ~ 647 647 850.7 647 912.3 
Zc = (Pc~c/pc)m 0.230 0.386 0.386 0.327 0.327 

" T h e  MF II values and SO II values are calculated with E = 4.58 kcal/mole, q = 0.915 
kcal/mole, and E2 = -  1.19 kcal/mole. These were used for comparison with thermo- 
dynamic properties in the 1 atm, 0-100~ range. The MF I and SO I values are chosen 
to fit Tc by scaling these values by 0.761 and 0.709, respectively. 

[aJ 
re" 

CO 
tt~ 

el 

( I :  

O 
t~ 

•  

// 
• x 

oU,o  2o 3o oo :o 6~ 7; 80 90 ,oo 
T 

Fig. 3. Vapor pressure of the model in the SOA vs. temperature compared with experi- 
ment ( • ), using the parameters of Fig. 1. 
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defect o f  a lattice model.  One cannot  hope to treat accurately the interactions 
between molecules in terms of  temperature- independent  parameters,  especially 
when the nearest-neighbor distance is allowed to grow as a funct ion o f  
temperature. Clearly, the interaction energies should really be "f ree  energies" 
which involve averages over intermolecular  vibrations 5 and distances. 

In Fig. l(b) the 0-100~ liquid region is expanded. We see a definite 
maximum in the coexistence density as a funct ion o f  temperature (or pressure) 
at 61~ and 0.25 atm. This is a necessary condit ion for the liquid to show a 
density maximum at fixed pressure. We therefore expect similar behavior  o f  
the l iquid-vapor  coexistence curve for real water in the ne ighborhood of  4~ 
when this curve is extended into the supercooled (with respect to crystalliza- 
tion) region. 

In  Fig. 3 the variat ion o f  vapor  pressure with temperature for the model  
is plotted and compared  with experiments. ~18~ The agreement with the 
experimental results is reasonably good. 

With use of  the assumed temperature dependence o f  the nearest-neighbor 

5 An approach to intramolecular vibrations has been given by Porosoff (16~ within the 
context of the "gel" model introduced in I. He found that the thermodynamic proper- 
ties of the liquid phase are particularly sensitive to these vibrations. A different approach 
to this has also been given by Fleming. (17) 
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Fig. 4. (a) (Top curve) A plot of the mass density of water molecules calculated from the 
SOA to the model with the parameters of Fig. 1 vs. temperature at 1 atm, compared with 
a plot of the experimental mass density (bottom curve). (b) Lattice density vs. tempera- 
ture at 1 atm. The top curve, calculated from the model, shows a maximum at 61~ 
while the "experimental lattice density" (bottom curve), obtained by multiplying po~p 
by vc/m, shows a maximum at 80~ 
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distance, it is easy to invert (30) numerically to obtain the density versus 
temperature at 1 atm. The mass density of  water obtained by multiplication 
of  the lattice density by m/Vc is plotted versus temperature and compared 
with experiment (19) in Fig. 4(a). We see that the calculated density is too large 
by a factor ~ 1.4 and should be a maximum somewhere below 0~ How- 
ever, the lattice density vs. temperature curve has a maximum at 61~ as 
seen in Fig. 4(b), For comparison, the effective "lattice density" of  water, 
obtained by multiplying the mass density by vim, is also plotted and shows a 
maximum at 80~ Since the maxima are so broad, we regard the agreement 
in the position o f  the maximum to be surprisingly good. It is most  surprising 
that a density maximum is obtained at all in this simple approximation. 

Knowing the density as a function of  temperature at 1 arm, we can 
calculate the temperature dependence of  other thermodynamic functions at 
this pressure. In Fig. 5 we plot the Gibbs and Helmholtz  free energies and the 
energy vs. temperature. In Fig. 6 we plot the entropy vs. temperature. The 
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Fig. 5. Energy and free energies from the SOA and parameters of Fig. 1 vs. temperature 
at 1 atm compared with experiments ( x ). 
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experimental values were obtained from tables compiled by DorseyJ 2~ Since 
his zeros of  energy and entropy correspond to those of a perfect ice crystal, 
we have shifted these quantities by constant amounts obtained from the 
assumption that our results are correct for the vapor phase at 373~ This 
assumption is certainly very good, since the vapor density is so low that only 
the free-particle (ideal) contribution is important. The agreement with the 
numerical values of  the free energies is very good. The agreement with 
derivatives of free energy (entropy and energy) is, of  course, worse than the 
numerical agreement with the free energy itself. The agreement with the 
second derivatives of the free energy, the specific heats (Fig. 7), are fairly 
good, but the compressibility (Fig. 8) is in disagreement with experiments by 
Kell (21~ by a factor two. Since the liquid density calculated for the model 
is too large by 407o, it is surprising that we obtain thermodynamic properties 
which agree as well as they do with experimental results. These calculations 
definitely encourage further work on the M L G  in search of a better approxi- 
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Fig. 6. Entropy from the SOA and the parameters of Fig. 1 vs. temperature at 1 arm 
compared with experiments (x).  
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mation, which should include both higher-order corrections to the treatment 
of the configurational problem and a reasonable treatment of intermolecular 
vibrations. 

In order to understand the correlations included in the SOA, we look at 
the pair correlation function consistent with it. This can be obtained directly 
from (25). Thus we have 

G(1)G(2) + G(12) - G(1)g(12)G(2)  

= G(1)G(2) + Go(12) + Go(13)~(34)Go(42) (37) 

We see that the pair correlation function consistent with the SOA is correct 
to first order in the potential. 

Using the representation of the interaction given in III, we can easily 
obtain the value of the correlation function corresponding to the different 
kinds of relative orientations. For  H-bonding orientations we have 

gun = g l l - l l ( S l  z) = 1 + f iE - nfl(�89 + % , )  + �89 + 25,2 + f iE) (38a) 

for q orientations (two kinds) 

g,1 = gl~_~(s11) = 1 + 5,1 - n(~-Sq + �89 
+ }n=(55~, + 2/3,= + / 3 E )  (38b) 

gl  2 = g~l~l(Sl 1) = 1 +/3,1 - n(�88 + �88 + �89 

+ ~n=(5/3q + 2/3,= + / 3 e )  (38c) 

gl = ~gz 1 + ~gl = 

= 1 +/3,1 13 
- n(~aS~, + § + ~/3,=) + }n=(5/3q + 25,2 + / 3 E )  (386) 

and for the ,2 orientations 

g2 = g11-1~(6i 1) = 1 + 5,2 - n(/3,= + 5"2) + ~n2(5/3q + 2/3,2 +/3E)  (38e) 

Here we have employed the notation of  the Appendix of  III, in which the index 
- (~ = 1-12) is replaced by the pair of  indices a,/3 (a = _+ 1,/3 = 1-6). 
The index a labels the two sets of tetrahedrally disposed nearest neighbors, 
and/3 labels the six elements of the point group of  a water molecule with 
respect to the ath sublattice. In (38a) we have indicated components of the 
correlation function gaza'a" 

The average value of the correlation function is obtained by appropriate 
summation over orientations. This averaging yields 

g = ~gl + �88 + -~gHB 

= 1 + ~(1 - n)Z(5/3ez + 2/3, 2 + fiE) (39) 

The average number of nearest neighbors of a given type is obtained by 
multiplication of the correlation function for that type by the density and by 
the average number of nearest neighbors which can have the required 
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orientation. By this method we obtain 

NaB = ngHB (40a) 

N1 = 5ngl (40b) 

N1 = 2ng2 (40c) 

Ntot = 8ng (40d) 

In Fig. 9 we plot these quantities vs. temperature for the values of  the density 
corresponding to 1 atm. The total number of  nearest neighbors is essentially 
constant over this temperature range, as observed experimentally. (22) How- 
ever, the number of  neighbors we obtain, 6.8, is larger than the observed 
value, 4.5 (22), by about the same factor ( ~  1.4) as was found for the density. 
Thus, if  the "correct lattice density" is substituted into (40d), we obtain 
essentially the observed number of  nearest neighbors. More interesting, how- 
ever, is the temperature dependence of  the other types of  neighbors. The rise 
with temperature in the average number of  non-H-bonded neighbors of  a 
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Fig. 9. Number of nearest neighbors calculated from the approximate correlation 
function of the model as a function of temperature for 1 atm. Ntot is the total number of 
neighbors, NHB is the number of hydrogen-bonded neighbors, NI is the number of 
neighbors that interact by el, and N2 is the number that interact by e2. 
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typical molecule is combined with a corresponding decrease in its number of 
H-bonded neighbors, while the total number of neighbors at the given 
(typical) molecule remains (approximately) fixed and the density traverses a 
maximum. 

4. C O N C L U S I O N  

Although the SOA is the simplest correction to the MFA, it appears to 
display some of the sensitivity to angular correlations expected in the model. 
We have seen that this approximation is sufficient to show a maximum in the 
density as a function of temperature both along the coexistence curve and at 
1 atm. Although the liquid density is too large, surprisingly good agreement 
with experimentally obtained values for other thermodynamic functions has 
been found. A better approximation to the MLG might achieve even better 
agreement. 

An important point to note is that we started with a model which makes 
no assumption of the existence of the liquid. We have shown that the model 
possesses a phase transition which can be identified with the vapor-liquid 
transition of water. This is to be contrasted with other "mode l "  theories 6 
which also give good agreement with experiments in the very small (with 
respect to the whole phase diagram--see Fig. la) PnT region corresponding 
to I atm and 0-100~ but are incapable of discussing phase transitions, 
virial coefficients, etc. 

The disadvantage of this model is its use of the lattice. One hopes that 
ultimately a quantitative theory of water can be developed with full trans- 
lational invariance and a continuous potential. With recognition of recent 
progress in perturbation theory of liquids (2~ this goal seems realizable in the 
near future. In fact, progress is being made(ZS~ toward a reasonable continuum 
theory of water. The "ge l"  model yielded by the considerations of I and II 
can potentially yield an approximate theory of liquid water which makes no 
reference to a lattice (even for treatment of repulsions as in I and II). Never- 
theless, at this time the calculation simplifications afforded by a lattice model 
warrant further study of the MLG, especially in light of the results obtained 
here. 

A P P E N D I X  A. E I G E N V A L U E S  A N D  E I G E N V E C T O R S  OF G~pA 

In this appendix we invert Eq. (24) by finding the eigenvectors of G~A. 
In terms of the basis defined in the Appendix of III, (24) becomes 

12 1 ~~ - [4,~B~(k) + ~,~2(k)] 8~_~ (A.1) 

See Ref. 23 for a review of model theories of water. 



372 Paul D. Fleming III and Jul ian H. Gibbs 

where 

and 

~~ = fl~l ~ exp ( -  ik. fi~), 

G~.~l(k)  = R ~  ~ {exp[- ik . (R - R~)]}G~I~(R - R ~) 

Two eigenvalues can be found by inspection, since 

and 

I 1 ~O(k) _ ~12(k)] )~bO~(k) (A.2) -/z ~o(k) - 6[ 1 _ n 

~b~ = (1/~/T2)(3~1 + ~e-'n~176 

~bo(k) = 3fl(E - ,) ~ exp ( -  ik. li~ ~) 

~ = + 1  

where 

{ [ 1]) 
~(k) = arg ~o(k) + 6 ~12(k) + ~~ 1 - n 

The remaining eigenvalues in the subspace orthogonal to ~b ~ = + 1 can be 
obtained from the eigenvalues of ~b in that subspace. This eigenvalue problem 
can be stated as 

~B~B~(k)~b~(k) = ~b~Bl(k)~a_%B~(k) = ~ a ( k ) ~ ( k )  
(i.3) 

h--- 1-5, ~ = _ + 1  

The eigenvalues ~a are real since ~1 is Hermitian and can be chosen positive. 
If we consider the set of eigenvectors (h = 0-5, tz = + 1), then it follows 

that 

~b*~'~(k)G~'~(k)~b~(k) = G]~'(k)3uu13aal (A.4) 

G~-~(k) = 12 + 63~~ [ 1 ~ ~  1 - n 

-/~] ~a(k)- 63ao[- 1 In  ~~ 412(k)1 I 
Thus we see that the RPA correlation function can be determined in 

terms of the eigenvalues of 4- The eigenvalue problem is greatly simplified 

where 

~2(k) = fi(r - r ~ exp(ik. 6~ ~) 
? 

1 ~o(k)] 
G~-B~IBI(k)~~ = {-~ + 6 [ 1 - n  
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if we notice that four of the eigenvalues are zero. It is easy to verify that 

~l(k)~b~ = 0 for ~ = 4, 5, /~ = _+ 1 

where 

(i) (+i) ~b~ = (l/V:]2) 3,~ and ~b~ = �89 3,~ (A.5) 

We project out the remaining subspace of eigenvectors in terms of the ortho- 
normal vectors 

(i) r  = ( ~ / ~ / ~ )  , r  = ( ~ o / V 2 )  o ' 

\ 

- 0 ( 1 . 6 )  

\ 0! 
It is easily verified that the vectors are orthogonal to the ~b ~" for )t = 0, 4, 5. 

In this subspace we obtain the projected matrix 

V~ 1 1 V1~1 V~ 'D vlg. I 

= ~ar (A.7) 

where 
[ ~o(k) A~(k) - A2 ( k ) \  

~ l ( k )  = (~;l(k))* : [ A~(k) �89  -Aa(k)~ 
/ / 

\ - A 2 ( k )  -As(k)  �89 / 
with 

A~(k) = f i ( E  - q)[exp(-  ik. 5~ ~) + exp( -  ik. 52 ~) 

- exp( - ik. S3 ~) - exp( -  ik. 5~)] 

A2(k) = ~(E - e~)[exp(- ik. 5~ ~) + exp( -  ik. 5a ~) 

- exp( -  ik. 82 ~) - exp( -  ik. 8~)] 
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Aa(k) = f l ( E -  q) [exp(- ik .8~  ~) + exp( - ik .5~  ~) 

- e x p ( -  ik. 8a ~) - exp(ik. S~)] 

The eigenvalue problem (A.3) is transformed to 

~r a~(k) t~q~a(k)~b~(k) 

where 

(A.8) 

~ ( k )  ~" '~ = ~ba~ (k)~b~B 

Finally, (A.8) can be reduced to a 3 • 3 matrix equation, since it is 
equivalent to 

~b~(k)~-~(k)~b~U~(k) = [~ba(k)12~b~(k) (A.9) 

Equation (A.9) can be solved analytically for the eigenvalues q~2 and the 
corresponding eigenvectors, since the eigenvalue equation is cubic. If we 
solve for the eigenvalues of ~ -  ~, we obtain 

[~a(k)] 2 = il~o(k)12 + ~lAdk)[ ~ + ~[&(k)[  ~ + ~[&(k)[  ~ 

+ (1)I/as~(k) + ((1)I/S)*s2(k) (A.10) 

where h = 1, 2, 3 label the three cube roots of one, 

s~(k)= {a~ + l[.[a'~ )]3 a~k))~/2} ~'3 

with 

and 

where 

ao(k) = 2 Re[B4OOB~*(k)B6(k)] + B~(k)B2(k)Ba(k) 
+ B~(k)[Bdk)] 2 + B2(k)lB~(k)[ ~ + Ba(k)lB~(k)] 2 

a~(k) = IB4(k)[ 2 + IB~(k)[ ~ + IBo(k)l ~ - B~(k)B~(k)  

- Ba(k)B~(k)  --  B l ( k ) B 2 ( k )  

B l ( k )  = k[IAl (k) [  ~ + l & ( k ) [  ~ - 2lA3(k)[  ~] 

B2(k)  = ~ [ l A l ( k ) l  ~ + IA3(k)l ~ - 2 l & ( k ) l  ~] 

Oa(k) = ~ [ [ & ( k ) l  2 + [ & ( k ) l  2 - 2 [Al (k) [  ~] 

B~(k)  = ~ Re[~o(k)A~*(k) ]  + A2(k)A3*(k)  

Bs (k )  = - ~  Re[~o(k)Aa*(k) ]  - A3*(k)A~(k) 
Balk)  = - ~  R e [ ~ o ( k ) & * ( k ) ]  - -  & ( k ) A ~ * ( k )  
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The corresponding eigenvectors of  ~1~-1 are 

~0`) = b~0 )̀/U~0 )̀ 
where 

b1~0`) = B40`)B60`) - {B20`) - 3[q~a(k)]2}Bs(k) 

b2~0`) - B4(k)B50`) - {Bl(k) - 3[q~a0`)]2}B60`) 

ba~(k) = {B~(k) - 3[q~z0`)]:}{B20`) - 3[~a(k)] 2} - IBm0` ) ]  = 

with 

8[q~a(k)] 2 = (1)l/as10`) + ((1)l/a)*s20`) 
and  

i x ( k )  = ~ Ibd0` ) l  ~ 
y 

In  terms of  these vectors we identify 

~baavu0 )̀ = �89 +/~b*~0`)8~_ ~] (A. 11) 

The  R P A  free energy can be evaluated by noting that  the logar i thmic 
te rm in (25) can be wri t ten as 

tr  ln[~(12) - Go(13)~(32)] = tr ln[Go(13)G-~(32)] 

-- tr In Go(13) - tr In G-1(32) (A.12) 
N o w  in equil ibrium 

Go~B~B(k) = (12/n)3~3BB~ + [1/(1 -- n)] (1.13) 

I t  is easily seen that  the eigenvalues of  Go are l/n(1 - n) and 1/n (11 times). 
Therefore  

tr  In Go(13) = - N o  In n~2(1 - n) (1 .14)  

The  second te rm in (A. 12) can be obta ined  in terms of  the GvA(k) as 

i f d a k ~  tr In G-~(32) = No v-~ ~ In 6 2 0 ' )  (1 .15)  
A = I  

/ t =  : k l  

Then  FapA can be calculated f rom G.a(k) using (A.14) and (A.15). 

A P P E N D I X  B. EFFECT OF LATTICE E X P A N S I O N  ON 
T H E R M O D Y N A M I C  F U N C T I O N S  

In this appendix  we indicate how the lattice expansion can be incorpor-  
ated into the calculat ion of  the rmodynamic  functions.  The free energy F in 
Eq. (29) is related to the (extensive) Helmhol tz  free energy A by 

fiA/No = fn~ + f (B. 1) 

where f n t  is the internal free energy discussed in footnote  4. 
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The equation of state is unchanged, since its evaluation involves only 
constant-temperature derivatives of the free energy with respect to the density. 
f~nt does not contribute, since 

f n t  = n@fnt/On)r (B.2) 

However, we must include the lattice expansion in calculating the energy, 
since it is related to the free energy by a temperature derivative. We can easily 
show that 

f i e =  1~o d(~fiA)= fl[?(f +b--fi f~*)]j + (n ( ~ ) - r  f )  01nTfifivo (B.3) 

But n(9f/?n) - f i s  just Pfvc, so the energy becomes 

fie = 3n - n2(B2 + AB2) -- n3B a n~B4 0 In vc - T + (Pfv~ - n) ~lnfi  (B.4) 

The factor - n  ~(ln vc)/~ i n f  arises from differentiation of the explicit vc 
dependence of Z inf.  

The entropy is obtained in the usual manner from 

s --- fe - f - f~nt (B. 5) 

The isothermal compressibility is unchanged, and c~ is given (including an 
internal contribution of ~k) by 

?2 In v~ 
c~ n4B~ (Pfv ,  - n) f12 n-~ = 3n + 2n 2 ~xB2 + naB3 + ~ - ~ ln 

[ n[?S] ( ~ v ~ )  ] 01nvo (B.6) 
+ s -  \ ~ n / T - n - f  ~ a l n f  

where 

n(?S~ n \~nn]r = 3n - n l n ~  + n ln(1 - n) - 2n 2 AB2 naB32 n~B~3 

] 0ln o 
+ n - n  

T ? l n 3  

and 
f(OPfv~/Of),~ = -n2(B2 + ABz) - nab 3 - ~n4B4 

c v is related to c~ by (35), provided the corrected expressions for s and 
n(Os/?n)r are used. 

In all our calculations we have assumed that the nearest-neighbor 
distance as a function of temperature is (in angstroms) 

RNN = 2.82 + 0.00061(T- 277) (B.7) 
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This equa t ion  fits the exper imenta l  (22) RN~ between 0 and  200~ F r o m  this 
dependence  it is easy to calculate  the derivat ives o f  the uni t  cell volume with  

respect  to t empera tu re :  

In vc = _ 3  ~ - i n  Rr~r = 0.00183T (B.8a) 
In/3 0 In T R~N 

and  

~2 In v~ = a In vc [9  In vc~ 2 (B.Sb) 
a l n / 3  2 a l n / 3  ~ a l n / 3 ]  
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